M1. (a) current that is always in the same direction
(b) total resistance $=30(\Omega)$
$V=0.4 \times 30$

12 (V)
allow 12 (V) with no working shown for $\mathbf{3}$ marks an answer of $8(\mathrm{~V})$ or $4(\mathrm{~V})$ gains 2 marks only
(c) $P=0.4 \times 12=4.8$

5 (W)
allow 5 (W) with no working shown for 2 marks allow 4.8 (W) with no working shown for 1 mark

```
M2. (a) (i) 15
```

(ii) 4.5 or their (a)(i) $\times 0.3$ correctly calculated allow 1 mark for correct substitution, ie 0.3 x 15/their (a)(i), provided no subsequent step
(ii) decrease
(b) \mathbf{Y}
accept any correct indication
reason only scores if \mathbf{Y} is chosen accept voltage for p.d.
(only one that) shows a direct current / p.d. or a battery / cell gives a direct current accept both \boldsymbol{X} and \mathbf{Z} are a.c.
or
a battery/cell gives a constant current/p.d.
accept it's a constant current/p.d. it is not changing is insufficient

M3. (a) (i) $50(\mathrm{~Hz})$
(ii) 2760 (W)
(b) 12
allow 1 mark for correct substitution, ie 2400/200
or
allow 1 mark for 2760/230 provided no subsequent step shown
amps
(c) the charge is directly proportional to the time switched on for accept for 1 mark the longer time (to boil), the greater amount of charge
or positive correlation
or they are proportional

M4. (a) $25(\Omega)$
(b) (i) $2(\mathrm{~V})$
allow 1 mark for showing a correct method, ie 6 / 3
(ii) equal to

M5.(a)

allow 1 mark for each correct line if more than one line is drawn from any symbol then all of those lines are wrong
(b) (i) half
(ii) $3(\mathrm{~V})$
(iii) V_{1}
(c) (i) potential difference / voltage of the power supply
accept the power supply accept the voltage / volts accept number of cells / batteries accept (same) cells / batteries do not accept same ammeter / switch / wires
(ii) bar drawn - height 1.(00)A
ignore width of bar
allow 1 mark for bar shorter than $3^{\text {rd }}$ bar
(iii) as the number of resistors increases the current decreases

M6.(a) battery, lamp and ammeter connected in series with variable resistor
voltmeter in parallel with (filament) lamp
(b) Level 2 (3-4 marks):

A detailed and coherent description of a plan covering all the major steps is provided.
The steps are set out in a logical manner that could be followed by another person to
obtain valid results.
Level 1 (1-2 marks):
Simple statements relating to relevant apparatus or steps are made but they may not be in a logical order. The plan would not allow another person to obtain valid results.

0 marks:

No relevant content

Indicative content

- ammeter used to measure current
- voltmeter used to measure potential difference
- resistance of variable resistor altered to change current in circuit or change potential difference (across filament lamp)
- resistance (of filament lamp) calculated or $\mathrm{R}=\mathrm{V} / \mathrm{I}$ statement
- resistance calculated for a large enough range of different currents that would allow a valid conclusion about the relationship to be made
(c) (as current increases) resistance increases (at an increasing rate)
(d) any value between 6.3 and $6.9(\Omega)$
(e) A: Filament lamp

C: Diode

M7.(a) (i) any six from:

- switch on
- read both ammeter and voltmeter
allow read the meters
- adjust variable resistor to change the current
- take further readings
- draw graph
- (of) V against I
allow take mean
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$
allow take the gradient of the graph
(ii) resistor would get hot if current left on
so its resistance would increase
(iii) $12(\mathrm{~V})$
0.75×16 gains 1 mark
(iv) $15(\Omega)$

16 is nearer to that value than any other
(b) if current is above 5 A / value of fuse
fuse melts
allow blows / breaks
do not accept exploded
breaks circuit

